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Parallel-ProBiS: Fast Parallel Algorithm for Local Structural
Comparison of Protein Structures and Binding Sites

Janez Konc,™™ Matjaz Depolli,®! Roman Trobec, Kati Rozman, and Dusanka Janezi¢*

The ProBiS algorithm performs a local structural comparison of the
query protein surface against the nonredundant database of
protein structures. It finds proteins that have binding sites in
common with the query protein. Here, we present a new
parallelized algorithm, Parallel-ProBiS, for detecting similar binding
sites on clusters of computers. The obtained speedups of the
parallel ProBiS scale almost ideally with the number of computing
cores up to about 64 computing cores. Scaling is better for larger

Introduction

The exponential increase in computer power has made
searches in protein structural databases of thousands of pro-
tein structures routine. A variety of techniques exist for protein
similarity searching, ranging in computational complexity from
global structural superposition methods™ to more complex
substructure or fingerprint searches.* The ProBiS algorithm
of Konc and Janezic®® belongs to the latter class of algorithms
and detects pairwise local similarities in proteins by computing
the similarity of protein graphs, which are representations of
specific proteins. It runs in the ProBiS web server” at http://
probis.cmm.ki.si and the parallel version was used to create
the ProBiS-Database,”® a repository of over 420 million precal-
culated binding site similarities and local pairwise alignments
of protein database (PDB) structures at http://probis.cmm.ki.si/
database. Despite the complexity of comparing entire protein
structures, ProBiS has demonstrated its ability to find intricate
similar three-dimensional patterns in sites involved in binding
of small molecules, ions, proteins, or nucleic acids'®; its com-
pelling advantages are speed and the ever-increasing availabil-
ity of appropriate protein structures.

Although ProBiS is one of the fastest and most advanced
local similarity search techniques in general usage, emerging
problems in structural bioinformatics,>'” drug reposition-
ing"""? and prediction of protein function!”>'* require dra-
matically faster methods for calculating structural similarities.
The currently available PDB holds more than 180,000 single-
chain protein structures and is currently being used for a vari-
ety of bioinformatics analyses. Exhaustive structural similarity
searches on a database containing hundreds of thousands of
structures present a challenge to commonly used structural
alignment algorithms.l'*! Even more time consuming are ex-
haustive database searches such as those in ProBiS, which rep-
resents proteins at the level of functional groups and seeks
similar three-dimensional binding site patterns. As there are
more than 100,000 protein single chains in the PDB, all-
against-all comparisons of protein structures, which can easily
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than for smaller query proteins. For a protein with almost 600
amino acids, the maximum speedup of 180 was achieved on two
interconnected clusters with 248 computing cores. Source code of
Parallel-ProBiS is available for download free for academic users at
http://probis.cmm.ki.si/download. © 2012 Wiley Periodicals, Inc.
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require billions of comparisons, can also present a challenge
to conventional algorithms.

The need for parallelization arises from this rapid growth of
the PDB. Conversely, contemporary computers typically have
multiple computing units (cores)!'™; however, with naive pro-
gramming approaches, a single program will only exploit a sin-
gle computing core. Although a single comparison of two pro-
teins can be done in linear time, procedures such as all-
against-all comparison of PDB require computing times that
are the square of the database size. Consequently, as the size
of PDB increases,™ faster similarity methods are required to
handle the increasing computational load.

The message passing interface (MPI) standard for communi-
cation in parallel computing offers a solution to this prob-
lem."® The central processing units (CPUs) of modern com-
puters have multiple cores that are separately programmable
and can, when used proficiently, offer significant increases in
computation speed over single CPUs"” and Ethernet connec-
tions enable fast connectivity between separate computers. Par-
allelization has been applied effectively to related problems in
computational chemistry, including molecular dynamics'™® and
three-dimensional similarity comparisons of small molecules."'”!

In this article, we present a parallelized version of ProBiS.
This is a new algorithm that calculates the local similarity met-
ric between protein structures and is especially suited to effi-
cient execution on multiple CPUs and on computers of varying
power interconnected in a network, which are available in
contemporary computing platforms or computing clouds.!'®
When calculating local structural similarities in a database of
over 29,000 protein structures, this parallel version of the
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ProBiS algorithm is 180 times faster on a cluster of 49 com-
puter nodes than the existing ProBiS algorithm implemented
with script-based concurrent runs. We explain the ProBiS algo-
rithm, provide a description of our new Parallel-ProBiS algo-
rithm, and present performance benchmarks and comparison
of the two algorithms. The code is freely available for aca-
demic users at http://probis.cmm.ki.si/download.

Methods

Benchmark database of PDB protein structures

The nonredundant PDB used in this article was built by clus-
tering 181,882 protein single chains in the PDB with >95%
sequence identical structures.”® A representative of each clus-
ter is chosen and surface residues of the selected representa-
tive proteins are identified and converted to protein graph
representations, which are saved into 29,266 “surface files” that
enable fast pairwise comparisons by ProBiS.

Overview of the ProBiS algorithm

ProBiS performs a local structural comparison of the query
protein surface against the nonredundant PDB. It finds pro-
teins that have binding sites in common with the query pro-
tein. Similar binding sites can be found even in proteins of
different folds. It also detects structurally conserved regions
on the query protein structure and provides structural super-
impositions of the query protein and the similar proteins. The
algorithm exploits the fact that binding sites share similar
patterns of interactions in proteins that perform similar
functions.

ProBiS first defines the solvent accessible surface by rolling
a probe, an atom of 1.4 A radius over the protein atoms repre-
sented as van der Waals spheres. Residues that are up to 4 A
below this surface are considered for comparison. The surface
is represented as a protein graph, that is, structure of vertices
and edges.*® This representation, which is on the level of
functional groups, considers both geometrical and physico-
chemical properties of the surface. Possible interactions of a
protein with ligands are thus taken into account. A structural
similarity search algorithm, which uses a fast maximum clique
algorithm®® and operates independently of fold and
sequence, performs a local, surface-oriented comparison of the
proteins represented as graphs. All possible similar regions
between two compared proteins are identified. Each maximum
clique, that is, its rotational-translational variation, represents a
rigid, local similarity, which is then used to locally superimpose
the two compared protein structures. Finally, the two superim-
posed structures are subjected to local alignment of their
backbones, to find similarities that were missed using maxi-
mum clique approach. This final alignment finds similar sites
that adopt different conformations in the two compared pro-
teins. Degrees of structural conservation are calculated for all
amino acid residues of the query protein and reveal the extent
to which a particular residue appears in the local structural
alignments that were found within the protein database.

Parallel-ProBiS implementation

Parallelization of the time consuming protein comparison pro-
cess should be accomplished in such a way that it is equally
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efficient on single or multicore computing systems and on ho-
mogeneous or heterogeneous computing clusters or in com-
puting clouds. This implies that the parallelization methodol-
ogy must incorporate automatic balancing of computation.
The pairwise comparisons by ProBiS are computationally inten-
sive and repetitive and each comparison is independent, and
thus the algorithm is appropriate for parallelization. Paralleliza-
tion on the level of a single computing node can be imple-
mented using batch scripts,®” but such an approach is not
effective on parallel and distributed computing platforms with
a lot of interconnected computing nodes. Because the ProBiS
comparison implies a high ratio between the computation
time and communication time, it can be better parallelized on
a task level with an approach known as multiexperimental.l'”]

A parallel platform can be represented as a set of slave
nodes with a single master node and in this context, the
experiments are individual pairwise comparisons, that is, proc-
esses that run on slave nodes. Bookkeeping is implemented as
a separate process that runs on the master node. Usually, the
master bookkeeping process is much simpler than the com-
parison processes and the master node can run concurrently
with the slave processes.

The program that activates the ProBiS algorithm is the same
for all computing slave nodes and has two parts, first for the
supervising master process with a process identification (Id) = 0,
and second for the remaining slave processes. The program
is presented as a flowchart in Figure 1. The communication
between parallel processes is implemented using a standard
MPI library""” and consists of the master node sending pro-
tein names to slave nodes that will return comparison
results to the master node. Communications are short and
infrequent: for every pairwise protein comparison, only a
few bytes long message with the protein name that is to
be compared with the query, and a few kilobytes long
return message with the results of the pairwise comparison,
are sent. In addition, queues of protein names on the slave
nodes serve as buffers, providing slave nodes with work,
while the master node is busy. The computation of each
pairwise protein comparison takes between hundreds of
milliseconds and a few seconds to complete, and thus the
time lost on communication between processes is several
orders of magnitude shorter than the computation time.
Consequently, restrictions posed by the communication
channel bandwidth and message latency are very low. We
experienced that the standard 100 Mb/s Ethernet suffices to
connect several hundreds of slaves with the master node.

As the MPI is available in a standard form for most of the
existing platforms,?"" our approach is highly portable. The
parallel code can also run on heterogeneous systems, with
different hardware architecture and different operating
systems. Because of the asynchronous design of the proposed
solution, the communication requirements are minimal and
the computational load is automatically balanced, supporting
our expectations that the speedup of the proposed parallel
program will be close to ideal.

Benchmarking methodology

We measured the speedup of the proposed parallelization on
a number of benchmarking problems based on the calculation
of similarity of a query protein against all the proteins in a
nonredundant benchmark PDB—a common task in many
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Figure 1. Overview of Parallel-ProBiS algorithm. Part of the algorithm exe-
cuted on master node is in white boxes; part executed on slave nodes is in
gray boxes. Input: query protein (protein A); comparison protein database;
number of slave nodes (n); slave queue size (g). Output: pairwise local
structural alignments of query protein with all database proteins.
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structural alignment applications. We have selected a small set
of query proteins, 1phr.A (177 amino acids), 1acb.E (245 a.a)),
liov.A (306 a.a.), and TuzfA (589 a.a.), to measure the impact
of protein size on the performance of the Parallel-ProBiS
algorithm.

The benchmark tests were performed on the cluster at the
National Institute of Chemistry (NIC) in Ljubljana, Slovenia. This
cluster is composed of 18 state-of-the-art computing nodes,
from which, as many as 14, each with two quad-core Intel
Xeon 5520 2.26 GHz processors, were available for the test. All
nodes ran under Ubuntu 10.04 LTS operating system. Further
tests were run on a heterogeneous system obtained by con-
necting to an additional cluster at the Jozef Stefan Institute
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Figure 2. Topology of experimental setup; nodes pO-p17 represent the
NIC cluster, and nodes k0-k36 represent IJS cluster. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

(1JS) in Ljubljana, Slovenia, comprising 37 computing nodes,
each with a single quad-core Intel Xeon 5520 2.26 GHz proces-
sor. These nodes ran under the Ubuntu 11.04 operating system.
The topology of the NIC and 1JS clusters is shown in Figure 2.
One of the nodes in each cluster acts as a gateway to the Inter-
net. The nodes of both clusters are interconnected with Gigabit
Ethernet links; however, both gateway nodes can communicate
with a maximum bandwidth of 100 Mb/s. The MPI library
requires that all computing nodes belong to the same network
address space; therefore, a virtual private network (VPN) was
established for the tests involving both 1JS and NIC clusters. The
VPN server resided on the gateway computer of the 1JS cluster.
Computers of the 1JS cluster were connected to it directly,
whereas computers of the NIC cluster communicate via the NIC
gateway node. The Mpich2 1.2.1 library was used as an imple-
mentation of the MPI standard™®'’ on both clusters.

We first ran the ProBiS algorithm on single cores to find out
the shortest sequential execution time T; of the nonparallel ver-
sion of the algorithm. Then we ran the Parallel-ProBiS algorithm
on 1, 2, 4, 8, and 14 nodes of the NIC cluster. These were in two
configurations—hyperthreading was either active or inactive,
which resulted in 16 or 8 processes per node, and the total
number of processes p = {16, 32, 64, 128, 224} or p = {8, 16, 32,
64, 112}, respectively. Finally, we ran the performance tests on
the heterogeneous system of 13 NIC cluster nodes with 8 and
16 processes per node, and 36 1JS cluster nodes with four and
eight processes per node, for the total of p = 298 and p = 496,
respectively. We measured the execution time of the Parallel-
ProBiS T, and calculated the speedup!'” as S = T,/T,. The maxi-
mum theoretic speedup, also termed the ideal speedup, equals
p. All tests were run 10 times to show the statistical properties
of the measured results.

Results

To assess the performance of the Parallel-ProBiS algorithm, we
performed a series of database searches with different query
proteins. The performance on a single node, a cluster of
nodes, and two clusters located at two institutions and con-
nected through the Internet was evaluated. Each measurement
was repeated 10 times and the speedup of the parallel versus
the nonparallel ProBiS algorithm was calculated. Details are in
Supporting Information Tables SI1 and SI2.

The Parallel-ProBiS using MPI-based parallelization achieves
on a single node slightly better speedups than the script-
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Figure 3. Speedup of Parallel-ProBiS on a single computing node of the
NIC cluster as a function of the number of processes executed. Hyper-
threading was inactive (O) or active (A). The speedup of the script-based
parallelization (black) is averaged over all tested proteins.

based naive parallelization of the nonparallel ProBiS algorithm
(Fig. 3). The speedup is almost ideal with up to eight proc-
esses in the case of inactive hyperthreading; with active hyper-
threading, the speedup still increases, but with a slower rate.
Hyperthreading contributes up to 30% to the final speedup
on all 16 processes, which indicates that the Parallel-ProBiS
algorithm is able to concurrently exploit floating point calcula-
tion, integer processing, and memory data transfer.

The speedup of Parallel-ProBiS tested on the NIC cluster
depends on the size of a query protein (Fig. 4). For smaller

Hyperthreading inactive
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query proteins of ~ 200 amino acids, that is, TphrA and
lacb.E, the speedup virtually does not increase when using
more than eight nodes. Therefore, small proteins should not
be calculated on more than eight nodes. The parallel scaling
efficiency, which is defined as the ratio between the measured
speedup and the ideal speedup, is between 44% and 95%,
with inactive hyperthreading, and between 25% and 62%,
with active hyperthreading. It decreases with the number of
computing nodes and increases with the protein size. Hyper-
threading effectively increases the speedup between 15% and
40% for the tested query proteins on up to 14 nodes of the
NIC cluster, and should be active, if the number of available
nodes is limiting.

We then tested Parallel-ProBiS on NIC and IJS clusters, con-
sisting of 13 and 36 nodes, respectively (Table 1). As before,
the speedups are better for larger proteins. The best speedup
so far, 161, was obtained for 1uzf.A, the largest protein in the
test set. Contrary to our previous results on a single cluster,
hyperthreading decreases the speedups for all query proteins.
We think that the communication is probably the cause of this
worsened performance. If this is true, the speedups for smaller
query proteins should decrease more than the speedups for
larger proteins with active hyperthreading, because the nodes
computing smaller query proteins need to communicate more
frequently. This can be seen and is confirmed by the data in
Table 1.

Parallel-ProBiS guarantees a balanced computational load at
the granularity of a single pairwise comparison, but lack of
finer granularity can produce some wait times at the last few
comparisons. In the worst
case, all processes except a
single  one finish their
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cant degradation in speedup
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Figure 4. Speedup of Parallel-ProBiS as a function of the number of NIC computing nodes. If hyperthreading is
inactive, each computing node executes eight, if active 16 Parallel-ProBiS processes concurrently. Ideal speedup

Number of computing nodes

esses is ~ 0.75; on both clus-
ters with 248 processes
~ 0.73. The speedup per
process is expected to de-
crease with the number of

8 14

(black), which is the maximum theoretic speedup, equals the number of processes; for example, for 14 computing

nodes, it is calculated as 14 x 8 = 112 (eight processes per computing node), if hyperthreading is inactive, and 14

X 16 = 224 (16 processes per computing node), if active.
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Table 1. Test results on interconnected NIC and IJS clusters with inactive hyperthreading (248 processes) and active hyperthreading (496 processes).
Number of Execution time (s) Speedup
Processes Nodes 1phrA lacb.E Tiov.A Tuzf.A 1phrA lacb.E Tiov.A Tuzf.A
248 13 + 36 136 = 48.2 141 = 63.7 251 £ 199 288 * 4.38 100 823 116 180
496 13 + 36 335 £91.0 357 £ 233 359 £ 423 399 * 205 40.6 326 81.4 130
does not seem to affect this. This confirms that the proposed Acknowledgments

methodology is very appropriate for the network and cluster
computing. The speedup is not as high as expected with
active hyperthreading, probably because of the increased com-
munication overhead of the MPI library. Also, with the increas-
ing number of nodes, the number of parallel processes
approaches the number of pairwise comparisons, which results
in unbalanced load and idle cores. This is a limitation of the
current methodology, which becomes apparent, when the
algorithm is run on more than eight nodes and the query pro-
tein’s size is less than 245 amino acids (Fig. 4).

Further increase of the speedup is possible by the paralleli-
zation on the level of protein comparison itself, which will
result in a finer granularity of the problem and easier load-bal-
ancing of processors. Particularly, we plan to parallelize the
maximum clique algorithm,?® which is the essential building
block of the proposed protein structural comparisons. We will
explore the efficiency of many-core and graphic processing
unit (GPU) platforms in further parallelization approaches.

The asset of the proposed Parallel-ProBiS is its ease of use
and better performance, compared to naive parallelization
using batch script. The only requirement is that the Parallel-
ProBiS program is properly installed on all nodes and that the
master node is able to communicate to all slave nodes
through the MPI library.

Conclusions

The growing size of the PDB requires the development of
faster algorithms for structural comparisons of protein struc-
tures. We have described a new parallel algorithm Parallel-Pro-
BiS, which enables efficient searches against the entire PDB.
This algorithm is well-suited for the implementation on clus-
ters or clouds of heterogeneous computers. It demonstrates a
161-fold speedup on 248 computing cores compared to the
nonparallel version that runs on a single core. The proposed
parallel algorithm scales well with the number of computers it
is running on, enabling high performance on large computer
clusters. By providing 2 orders of magnitude in speedup, the
Parallel-ProBiS algorithm enables dramatically larger calcula-
tions than previously possible. We anticipate that these local
similarity search capabilities will enable a new class of bioinfor-
matics applications from drug repositioning to off-target pre-
diction. The Parallel-ProBiS algorithm is available for download
at http://probis.cmm.ki.si/download.
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