ProBiS Algorithm
2012
User’s Guide
August 31, 2012

Laboratory for Molecular Modeling

National Institute of Chemistry

Hajdrihova 19

1000 Ljubljana, Slovenia

www

 HYPERLINK "http://www.sicmm.org/"
.

 HYPERLINK "http://www.sicmm.org/"
sicmm

 HYPERLINK "http://www.sicmm.org/"
.

 HYPERLINK "http://www.sicmm.org/"
org
Support: konc

 HYPERLINK "mailto:konc@cmm.ki.si"
@

 HYPERLINK "mailto:konc@cmm.ki.si"
cmm

 HYPERLINK "mailto:konc@cmm.ki.si"
.

 HYPERLINK "mailto:konc@cmm.ki.si"
ki

 HYPERLINK "mailto:konc@cmm.ki.si"
.

 HYPERLINK "mailto:konc@cmm.ki.si"
si
Collaborations: dusa

 HYPERLINK "mailto:dusa@cmm.ki.si"
@

 HYPERLINK "mailto:dusa@cmm.ki.si"
cmm

 HYPERLINK "mailto:dusa@cmm.ki.si"
.

 HYPERLINK "mailto:dusa@cmm.ki.si"
ki

 HYPERLINK "mailto:dusa@cmm.ki.si"
.

 HYPERLINK "mailto:dusa@cmm.ki.si"
si
Table Of Contents

Background
4
Installation Instructions
4
Required Libraries
4
Examples
5
Example 1: Superimpose a pair of protein structures (pairwise alignment).
5
Example 2: Superimpose a pair of binding sites (pairwise alignment II).
6
Example 3: Compare a protein against many protein structures.
6
Example 4: Compare a binding site against many protein structures.
7
Example 5: Compare a binding site against many other binding sites.
8
Options and modifiers
9
Options
9
-align
9
-compare
9
-extract
9
-results
9
-surfdb
9
-h
10
Modifiers
10
-alno ALIGNMENT_NO
10
-bsite BSITE, -bsite1 BSITE, or -bsite2 BSITE
10
-c1, c2
10
-database
10
-dist INTER_CHAIN_DIST
10
-f1, f2
10
-in INDIR
10
-local
10
-longnames
11
-motif MOTIF, -motif1 MOTIF, or -motif2 MOTIF
11
-nobb
11
-nomarkbb
11
-noclus
11
-nofp
11
-noprune
11
-out OUTDIR
11
-param PAR_FILE
11
-sfile SURF_FILE
11
-super
12
-verbose
12
-z_score Z_SCORE
12
Output files
12
info.json
12
query.json
12
alignments.json
13
*.cons.pdb, *.bu#.cons.pdb
14
*.rota.pdb
15
Using -align option
15
Using -super modifier
15
FAQ
15
Should I use as input cut-out binding sites (fragments) or complete protein structures?
15
Why .srf file still contains all protein atoms when I used -bsite or -motif to extract only on a binding site?
16
How fast is generation of surfaces (.srf files) with -extract?
16
Is it possible to run local alignment between two proteins. How can I use MOTIF in the parameter file to do this (align two binding sites)?
16
I already have 1phrA.nosql file. However I don't understand how I can get the P-value or significance of match between two structures?
16
I get two json files info.json & query.json. I dont know much about json format, so I don't understand query.json. But cat info.json gives me this {"z_score":1, "qpdb":"1phr", "qcid":"A", "biof": ["1phr.cons.pdb", "1phr.bu1.cons.pdb"]}. Does this means that 1phr has a Z-score = 1 for only self, so it does not matches with anything in proteins.txt?
16
I am trying to run probis on a proteome scale. So a lot of the proteins are models, with UniProt ID but it seems the program reads only first 4 letters of protein name. For example when I run 'mpiexec -host fp167 -np 16 ./probis -surfdb -sfile srfs.txt -f1 P0A626_bs1.srf -c1 A' it generates a nosql file P0A6A.nosql. So I am not sure whether it will correctly read my srfs.txt which contain many modeled structures having long names?
17
How to specify the input or output directory.
17
Can you tell me about the format of alignment.json so that I can parse the output. How do you parse the e-values for your analysis from this file?
18
I was able to figure all the things out and now I can read the JSON files and also find similar binding site in most cases. However in some cases my program dies saying incorrect format of JSON file Perl error -----> malformed JSON string, neither array, object, number, string or atom, at character offset 179 (before "inf, "alignment_score..."). The problem is in alignments.json. Is it a perl problem ?
18
Can I use a protein-protein binding site as input?
18

Background
ProBiS program aligns and superimposes complete protein surfaces, surface motifs, or protein binding sites. It enables pairwise alignments as well as fast database searches for similar proteins or binding sites. The program can find similar binding sites even in proteins with different folds. ProBiS program is parallel, for single or multiple CPU platforms, and implements the latest ProBiS algorithm (Parallel-ProBiS algorithm).
Further information can be found in the following articles:
· Konc,J., Depolli,M., Trobec,R., Rozman,K., Janezic,D. Parallel-ProBiS: Fast parallel algorithm for local structural comparison of protein structures and binding sites. J. Comp. Chem., 2012, doi: 10.1002/jcc.23048.

· Konc,J. and Janezic,D. ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment. Bioinformatics 2010, 26, 1160-1168.
Installation Instructions
For installation of the ProBiS source code on Ubuntu (or similar system) do the following:

· Unzip the distribution. A directory is created, in which there is the source code of ProBiS algorithm. Change to this directory after the unpacking is complete.

$ unzip probis-{version_number}.zip

$ cd probis-{version_number}

· Compile ProBiS source code into executable program.

$ make probis

· When compiled, type 'probis' to start.

$./probis

Required Libraries
ProBiS requires Open

 HYPERLINK "http://www.open-mpi.org/"

 HYPERLINK "http://www.open-mpi.org/"
MPI

 HYPERLINK "http://www.open-mpi.org/"

 HYPERLINK "http://www.open-mpi.org/"
library, GNU

 HYPERLINK "http://www.gnu.org/software/gsl/"

 HYPERLINK "http://www.gnu.org/software/gsl/"
scientific

 HYPERLINK "http://www.gnu.org/software/gsl/"

 HYPERLINK "http://www.gnu.org/software/gsl/"
library and GNU

 HYPERLINK "http://gcc.gnu.org/"

 HYPERLINK "http://gcc.gnu.org/"
C

 HYPERLINK "http://gcc.gnu.org/"
++

 HYPERLINK "http://gcc.gnu.org/"
compiler. Installation of these libraries for Ubuntu is easy:

$ sudo apt-get install openmpi-bin libopenmpi-dev libgsl0-dev g++

Examples

Files for each example are in a directory ‘example{number}’. Just ‘cd’ to an example directory, and you are ready to start! New terms, options, and modifiers, introduced in each example, are marked in bold.

Example 1: Superimpose a pair of protein structures (pairwise alignment).

ProBiS will find all local structural alignments of the compared protein surfaces, and superimpose the second protein’s coordinates onto the first protein’ coordinates according to the found alignments.

· Superimpose two proteins as follows:

$../probis -compare -super -f1 1phr.pdb -c1 A -f2 3jvi.pdb -c2 A

Output files '*.rota.pdb' contain 3jvi’s coordinates (only!) superimposed onto 1phr according to the three different alignments found in this case. The best superimposition (with highest z_score) is in file ‘1phrA_3jviA.0.rota.pdb’! Alignment scores are in 'REMARK PROBIS' lines in the '.rota.pdb' files.

[image: image1.png]

Superimposed proteins.

Example 2: Superimpose a pair of binding sites (pairwise alignment II).

Superimposing two binding sites is super easy (for correct scoring use .pdb files of complete proteins with ligands!):

· Superimpose the two binding sites defined as residues in a 3.0 Angstrom radius around the SO4 ligands as follows (see -bsite modifier):

$../probis -compare -super -dist 3.0 -f1 1phr.pdb -c1 A -bsite1 SO4.158.A -f2 3jvi.pdb -bsite2 SO4.201.A -c2 A

Alternatively, you can also directly select the SO4 binding site residues by their residue numbers and chain identifier(s) using the ‘-motif’ modifier:

$../probis -compare -super -motif1 "[:A and (12-19,129-131)]" -motif2 "[:A and (7-15)]" -f1 1phr.pdb -c1 A -f2 3jvi.pdb -c2 A

Output file ‘1phrA_3jviA.0.rota.pdb’ contains 3jvi’s coordinates (only!) superimposed onto 1phr according to the found alignment of the two binding sites. Alignment scores are in 'REMARK PROBIS' lines in '.rota.pdb' files.

Example 3: Compare a protein against many protein structures.

· Convert proteins from ‘.pdb’ to ‘.srf’ (surface) format, which allows faster computation.

$../probis -extract -f1 1phr.pdb -c1 A > 1phrA.srf

$ for i in $(cat proteins.txt); do ../probis -extract -f1 ${i:0:4}.pdb -c1 ${i:4:1} > $i.srf; done

Expression ${i:0:4} is replaced by first four letters on each line in proteins.txt (I'm using Bash notation, which might differ from yours).

· Run ProBiS on 8 processors for query protein 1phr.A. Resulting pairwise alignments are saved in an ‘.nosql’ file. The hostfile ‘hosts’ is a text file with hosts specified, one per line. To run the non-parallel version, just omit the ‘mpiexec’ command and its parameters.

$ mpiexec -v -hostfile hosts -np 8 ../probis -surfdb -sfile srfs.txt -f1 1phrA.srf -c1 A

· Read a ‘.nosql’ file and convert alignments to Json format. Output the query protein PDB with residues marked by degrees of structural conservation (see *.cons.pdb).

$../probis -results -f1 1phr.pdb -c1 A

· To get superimposed proteins as .pdb files.

$ for i in $(cat proteins.txt); do ../probis -align -alno 0 -f1 1phr.pdb -c1 A -f2 ${i:0:4}.pdb -c2 ${i:4:1}; done

Output are '*.alno.rota.pdb' files with rotated coordinates of the aligned proteins and the original coordinates of the query protein. To get alignment no. 2 or 3, use ‘-alno 1‘ or ‘-alno 2’; etc. Alignment numbers start with 0!

Example 4: Compare a binding site against many protein structures.

· Extract the SO4 ligand’s binding site and save it to ‘.srf’ file. This binding site is defined as all surface residues in a radius of 3.0 Angstroms around the SO4 ligand. Use an intact PDB file, containing the whole protein and ligands, with ProBiS! (Do not cut out binding sites into a separate file by hand, because ProBiS will do this for you.)

[image: image2.png]

Binding site for SO4 ion. Residues lining the binding site are cyan sticks.

Ligand is identified by its residue name, residue number, and chain identifier. Use the ‘-bsite’ and ‘-dist’ modifiers as follows:

$../probis -extract -bsite SO4.158.A -dist 3.0 -f1 1phr.pdb -c1 A > 1phrA.srf

Alternatively, you can also select the SO4 binding site residues by their residue numbers

and chain identifier(s) using the ‘-motif’ modifier:

$../probis -extract -motif "[:A and (12-19,129-131)]" -f1 1phr.pdb -c1 A > 1phrA.srf

Syntax is the same as for selecting residues in Jmol. If the binding site was on the

interface of two chains (e.g., chain A and B), you could do the following: "[:A and

(residue_ numbers_A) or :B and (residue_numbers_B)]", and also provide two chain id’s

such as ‘-c1 AB’ .

Then:

$ for i in $(cat proteins.txt); do ../probis -extract -f1 ${i:0:4}.pdb -c1 ${i:4:1} > $i.srf; done

· Run ProBiS on 8 processors for query binding site on 1phr.A. Resulting pairwise alignments are saved in an ‘.nosql’ file. The hostfile ‘hosts’ is a text file with hosts specified, one per line.

$ mpiexec -v -hostfile hosts -np 8 ../probis -surfdb -local -sfile srfs.txt -f1 1phrA.srf -c1 A

Use '-local' modifier if you want to get only alignments in the selected binding site region

(it's also a bit faster). Otherwise, the alignments will be extended to whole proteins.

· Read an ‘.nosql’ file and convert alignments to Json format. Output the query protein PDB with residues marked by degrees of structural conservation (see *.cons.pdb).

$../probis -results -f1 1phr.pdb -c1 A

· To get PDB files of the superimposed proteins.

$ for i in $(cat proteins.txt); do ../probis -align -alno 0 -f1 1phr.pdb -c1 A -f2 ${i:0:4}.pdb -c2 ${i:4:1}; done

Output are *.alno.rota.pdb files with rotated coordinates of aligned proteins. To get

alignment no. 2 or 3, use ‘-alno 1‘ or ‘-alno 2’; etc. Alignment numbers start with 0!

[image: image3.png]

Multiple superimposed binding sites (red) and ligands in the center.

Example 5: Compare a binding site against many other binding sites.

· Everything is the same as in Example 4, except that you have to prepare a file with ligand codes (format them according to rules described with ‘-bsite’ modifier) that will define the binding sites you want to compare (see ‘proteins.txt’ in this example’s directory). This time, the command for converting .pdb to .srf files is:

$ for i in $(cat proteins.txt); do ../probis -extract -bsite ${i:6} -dist 3.0 -f1 ${i:0:4}.pdb -c1 ${i:4:1} > ${i:0:5}.srf; done

Options and modifiers

Run ProBiS with the following command:

probis {OPTION} [MODIFIERS] -f1 PDB_FILE1 -c1 CHAIN_ID1 [-f2 PDB_FILE2 -c2 CHAIN_ID2]

Options

-align

Read a rotational matrix of an alignment from an .nosql file and superimpose the two given proteins accordingly (first run -compare or -surfdb). Output the superimposed proteins' coordinates in a .pdb file. You need to provide both .pdb files that you want to superimpose (see -f1, -c1, -f2, c2 modifiers) and an alignment number (see -alno modifier).

-compare

Compare two protein surfaces (.pdb or .srf files). (If you use .pdb files, surfaces will be computed first.) Output their local structural alignments in an .nosql file. Each alignment consists of a rotational matrix, alignment scores, and aligned residues of the compared proteins.

-extract

Calculate surface of a protein. Redirect the output (which is the surface) to a surface (.srf) file. Surface files can be used instead of .pdb files together with -compare or -surfdb options, which improves performance when doing repetitive comparisons (because surface does not need to be recalculated for each comparison). Option -surfdb works with .srf files exclusively!

-results

Read alignments from an .nosql file, filter them according to their scores, and calculate fingerprint residues (which can also be used as filter). Output results in Json format. In addition, replace B-factors in the query protein’s PDB file with the degrees of structural conservation. If used with -ligdir modifier, output ligands in Json format as well.

-surfdb

Compare the query protein surface (.srf) with other protein surfaces listed in the SURF_FILE (see -sfile modifier). This does the same calculation as the -compare option, but faster, because protein surfaces are precalculated (see -extract option). This options also supports parallel computation on multiple CPUs. Output is the same as with -compare.

-h

Show list of all parameters and their current values. You can copy/paste the parameters into a separate file and change their values (see -param modifier).

Modifiers

-alno ALIGNMENT_NO

Each comparison of a pair of proteins may result in many different local structural alignments.The alignment number can be 0 to 4 (see default CLUS_TO_OUTPUT parameter).

-bsite BSITE, -bsite1 BSITE, or -bsite2 BSITE

This selects protein residues in a certain radius (set by -dist) around the given ligand, and takes these residues as input (use with -extract or -compare options). If used with -compare, it only works with .pdb files (not .srf).

For example:

 ‘-bsite ATP.305.A’ - ATP (residue name), 305 (residue number), A (chain id)

‘-bsite *.*.B’ - chain B is the ligand (so you can select protein-protein binding sites as input)

-c1, c2

Chain identifiers of the compared proteins. You may give multiple chains, e.g., '-c1 ABC'.

-database

Used by the web server (with -surfdb and -compare options). It will output an .nosql file as usual, and additional .nosql file with inversed rotational matrices, whose lines are marked with asterisks.

-dist INTER_CHAIN_DIST

The distance between protein chains or between ligand and protein. Use with -bsite modifier or -mark and -results options.

-f1, f2

Compared proteins' files (.pdb or .srf).

-in INDIR

Directory where input files are.

-local

Use this to perform local alignments search (with -compare or -surfdb options). By default, after the local alignment is found (with maximum clique algorithm), an attempt is made to extend this alignment along the backbones of the compared proteins. In this way, parts of proteins that adopt different conformations (e.g., loops) can be aligned (these aligned residues are marked with 'flx' in alignments.json).

-longnames

Use this to allow long file names. By default the protein names are trimmed down to 4 letters.

-motif MOTIF, -motif1 MOTIF, or -motif2 MOTIF

This selects residues to be used as a query instead of the whole protein structure (use with -extract or -compare options). This will generate a .srf file with only the selected residues. To select some residues on chains A and B of the input protein, use -motif "[:A and (14,57,69-71) or :B and (33,34,50)]". Note that chain Iids are case sensitive. Square brackets are mandatory!

-nobb

Do not include descriptors originating from backbone atoms.

-nomarkbb

Turns off the default action, which is to mark (not delete) backbone descriptors. In the first step of filtering, only non-backbone descriptors are used, while in the maximum clique step, all descriptors are used.

-noclus

Local structural alignments found (maximum cliques) are not clustered.

-nofp

Do not calculate fingerprint residues. Do not filter by fingerprint residues (use with -results option).

-noprune

Alignments are not pruned. By default bad scoring cliques are deleted (see SURF_VECTOR_ANGLE, BLOSUM_SCORE and CALPHA_RMSD parameters).

-out OUTDIR

Directory to write output files to.

-param PAR_FILE

Read parameters from the specified parameter file.

-sfile SURF_FILE

Specify file that contains names of .srf files to be compared with the query protein (see -surfdb option). Each line must contain one .srf file-name.
Example:
protein1.srf A
protein2.srf B
protein3.srf A
etc.

-super

Find local structural alignments between two proteins (use with -compare option) and superimpose the two proteins according all alignments found. For each alignment, output the '.rota.pdb' file with the proteins superimposed according to this alignment.

-verbose

Output debugging information. Use when testing the program.

-z_score Z_SCORE

The cutoff value for z_score. Low z_score (<2) means that more insignificant alignments will be outputted (these can also occur by chance), higher z_score (>2) means only significant alignments will be outputted (use with -results option).

Output files

For explanation of the Json format see http

 HYPERLINK "http://www.json.org/"
://

 HYPERLINK "http://www.json.org/"
www

 HYPERLINK "http://www.json.org/"
.

 HYPERLINK "http://www.json.org/"
json

 HYPERLINK "http://www.json.org/"
.

 HYPERLINK "http://www.json.org/"
org

 HYPERLINK "http://www.json.org/"
/. Json is supported in all major programming languages.

info.json

Example:

{"z_score":1,"qpdb":"bs3","qcid":"A","biof":["bs3.cons.pdb"]}

Legend:

	z_score
	the cutoff z_score (see -z_score modifier); only alignments with their z_scores above this value are kept in ‘alignments.json’ file

	qpdb
	query pdb identifier (the first four letters of the input .pdb file) (see -longnames modifier)

	qcid
	query chain identifier

	biof
	names of the biological-assembly files of the query protein (if they exist)

query.json

Lists residues of the query protein and their degrees of structural conservation.

Example:

[

{"resi":1,"resn":"G","chain_id":"A","cons":0,"fp":0},

…

{"resi":129,"resn":"R","chain_id":"A","cons":4,"fp":0}

]

Legend:

	resi
	residue number

	resn
	residue name (one-letter notation)

	chain_id
	chain identifier

	cons
	degree of structural conservation between 0 and 9

	fp
	is it a fingerprint (highly conserved) residue? 0 - no, 1 - yes

alignments.json

Contains a list of aligned proteins sorted by their scores (sorting is done only by the z_score of alignment number 0 for each protein).

Example:

[

{

"pdb_id":"1eyv",

"chain_id":"A",

"nfp":0,

"protein_name":"-",

"alignment":

[

{

"scores":

{

"alignment_no":0,

"aligned_vertices":182,

"e_value":5.45e-144,

"rmsd":0.1,

"sva":1.01,

"z_score":4.74,

"alignment_score":12.45

},

"rotation_matrix":

[

[1.00,-0.00,0.00],

[-0.00,1.00,-0.00],

[-0.00,0.00,1.00]

],

"translation_vector":[-0.00,-0.00,0.00],

"aligned_residues":[

{"resn1":"L","resi1":13,"chain_id1":"A","cl":"","resn2":"L","res

i2":13,"chain_id2":"A"},

...

{"resn1":"F","resi1":129,"chain_id1":"A","cl":"","resn2":"F","re

si2":14,"chain_id2":"A"}

]

},

...

]

},

{ aligned protein #2 (similar as above) },

{ aligned protein #3 (similar as above) },

…

{ aligned protein #N (similar as above) }

]

Legend:

	pdb_id
	pdb id of the aligned protein

	chain_id
	chain id of the aligned protein

	nfp
	number of fingerprint (highly conserved) residues in all alignments of the aligned protein

	protein_name
	name of the protein (not used)

	alignment
	array of all alignments for one aligned protein

	scores
	object that holds all different scores for one alignment

	alignment_no
	alignment number (starts with 0!)

	aligned_vertices
	number of aligned graph vertices (the compared proteins are represented as vertices on the level of their functional groups)

	e_value
	expectation value for an alignment (the lower the better)

	rmsd
	RMSD of the aligned vertices (not atoms!)

	sva
	surface vector angle is the angle between the two normal vectors of the superimposed protein surfaces (lower the better)

	z_score
	Z-score for this alignment

	alignment_score
	a compound score calculated from sva, rmsd, e_value, and aligned_vertices

	rotation_matrix
	use rotation matrix (Xrot) and translation vector (Tvec) to superimpose coordinates of aligned protein with the query protein: Xrot=R*X + Tvec

	translation_vector
	see rotation_matrix

	aligned_residues
	object that holds corresponding aligned residues of the two compared proteins

	resn1, resn2
	residue names of the aligned residues: 1 - first protein, 2 - second protein

	resi1, resi2
	residue numbers of the aligned residues: 1 - first protein, 2 - second protein

	chain_id1, chain_id2
	chain ids of the aligned residues: 1 - first protein, 2 - second protein

	cl
	if this is flexible alignment (flx), then this alignment was found by extension of local alignments along backbones (see -local modifier)

*.cons.pdb, *.bu#.cons.pdb

Coordinates of the query protein (or its biological units) with degrees of structural conservation in B-factors.

Degrees of struct. conservation [0-9]
 |

 V
ATOM 164 N ASP A 25 -5.417 22.585 4.112 1.00 0.40 ATOM 165 CA ASP A 25 -4.752 21.401 3.553 1.00 0.40
*.rota.pdb

Using -align option

Superimposed coordinates of the query and compared proteins. Aligned residues are marked with ones in B-factors.

 Aligned residues have 1.00 here
 |
 V
MODEL 1 1d1qB ← Superimposed protein
…
ATOM 1417 N CYS B 18 8.287 29.028 27.733 1.00 1.00
ATOM 1418 CA CYS B 18 8.912 28.194 28.757 1.00 1.00
…

ENDMDL
MODEL 2 1phrA ← Query protein (original coordinates)
…

ATOM 97 N CYS A 17 8.075 28.921 27.850 1.00 1.00
ATOM 98 CA CYS A 17 8.756 28.117 28.832 1.00 1.00
…
ENDMDL
END
Using -super modifier
REMARK PROBIS ALIGNED_VERTICES 91 ← Alignment scores
REMARK PROBIS E_VALUE 6.62986e-41
REMARK PROBIS RMSD 0.715179
REMARK PROBIS SVA 0.947438 Superimposed protein
REMARK PROBIS Z_SCORE 3.34832 |
REMARK PROBIS ALIGNMENT_SCORE 9.37345 V
ATOM 1 N SER A 0 -3.462 48.359 42.685 1.00 24.99

ATOM 2 CA SER A 0 -2.739 47.051 42.825 1.00 24.45
FAQ

Should I use as input cut-out binding sites (fragments) or complete protein structures?
ProBiS does better if you take whole protein structures, and then define residues to be compared (binding sites, motifs) with the '-motif or '-bsite' modifiers (see examples 2, 4, and 5). If you still want to use fragments of '.pdb' files as input, you should add to the parameters.inp

the following lines:

Z_SCORE -1.0 # allow insignificant alignments

SURF_VECTOR_ANGLE 4.0 # turns off checking for equal surface vector angles
Then use '-param' modifier at the command line, when you run probis -surfdb or -compare, e.g.:

$../probis -surfdb -param parameters.inp -f1 …..
Why .srf file still contains all protein atoms when I used -bsite or -motif to extract only on a binding site?
If using whole structures together with -motif, the .srf file will still hold the whole protein, but only the binding site residues will be used for comparison (they will be marked as surface). Use the -motif or -bsite modifiers on target structure or on both target and template structures.
How fast is generation of surfaces (.srf files) with -extract?
Generation of .srf files should be lightning-fast (also if -motif and -bsite modifiers are used). I regularly use it for database of few 10k proteins, which is completed in minutes.
Is it possible to run local alignment between two proteins. How can I use MOTIF in the parameter file to do this (align two binding sites)?
You can run local alignment between two protein binding sites, you should use the -motif (or -bsite) modifier together with --extract option (see also examples 2, 4, and 5), to create '.srf' files, that contain only selected surface residues :

For query protein, e.g.:

$../probis -extract -motif "[:A and (14,57,69-71) or :B and (33,34,50)]" -f1 1phr.pdb -c1 A > 1phrA.srf

Similar for the compared protein(s):

$ for i in `cat proteins.txt`; do ../probis -extract -motif "some valid selection of residues" -f1 ${i:0:4}.pdb -c1 ${i:4:1} > $i.srf;done

Don't forget to use "" around the residue selection!
I already have 1phrA.nosql file. However I don't understand how I can get the P-value or significance of match between two structures?
You can get E-value or Z-score (the last shows you the significance of match) by reading the '.nosql' file with:

$../probis -results -param parameters.inp -f1 1phr.pdb -c1 A

This will generate a '.json' file, in which e_value and z_score will be for each alignment generated (there can be more alignments, identified by alignment_no, per each pair of compared proteins).
I get two json files info.json & query.json. I dont know much about json format, so I don't understand query.json. But cat info.json gives me this {"z_score":1, "qpdb":"1phr", "qcid":"A", "biof": ["1phr.cons.pdb", "1phr.bu1.cons.pdb"]}. Does this means that 1phr has a Z-score = 1 for only self, so it does not matches with anything in proteins.txt?
In 'info.json', the line {"z_score":1, "qpdb":"1phr", "qcid":"A", "biof": ["1phr.cons.pdb", "1phr.bu1.cons.pdb"]} means that the cutoff z_score is set to 1. All alignments with z_score < 1.0 will be deleted. You can change this (and other parameters) in parameters.inp file: to tighten the filter, just add line Z_SCORE 2.0.

File 'query.json' just gives degress of conservation for every residue of the query protein, e.g.,

{"resi":1,"resn":"A","chain_id":"A","cons":0,"fp":0}, means that residue number 1, chain A, has a conservation of 0 (could be [0-9]).
I am trying to run probis on a proteome scale. So a lot of the proteins are models, with UniProt ID but it seems the program reads only first 4 letters of protein name. For example when I run 'mpiexec -host fp167 -np 16 ./probis -surfdb -sfile srfs.txt -f1 P0A626_bs1.srf -c1 A' it generates a nosql file P0A6A.nosql. So I am not sure whether it will correctly read my srfs.txt which contain many modeled structures having long names?
In "molecule.cc" the program trims protein names to 4 characters. This is an old legacy behavior required by the web server... If you want to use long names, just use '-longnames' modifier.
How to specify the input or output directory.
You can try to use '-indir' and '-outdir' modifiers. If these don't work (they are still experimental), you can try this:

Output:

put the directory where "probis" program is (e.g. /usr/local/bin) in the path (in your .bashrc file PATH=$PATH:/usr/local/bin), make a directory where you want your output files to be written, 'cd' to that directory, and run probis from there. All output files will appear in that directory.

Input: if your .srf files are in e.g. '/tmp' directory, use full

path in srfs.txt

for example:

/tmp/P71662_bs1.srf A

/tmp/P71662_bs2.srf A

/tmp/O69689_bs1.srf A

/tmp/O69689_bs3.srf A

/tmp/O69689_bs4.srf A

Also, use full path on the command line for example:

$ probis -extract -f1 /pdbbank/P0A626_bs1.pdb -c1 A > /tmp/P0A626_bs1.srf

$ mpiexec -v -hostfile /full-path/hosts -np 8 probis -surfdb -param /full-path/parameters.inp --sfile /full-path/srfs.txt -f1 P0A626_bs1.srf -c1 A

This will generate P0A626_bs1A.nosql.

$ probis -results --param /full-path/parameters.inp -f1 /pdbbank/P0A626_bs1.pdb -c1 A
Can you tell me about the format of alignment.json so that I can parse the output. How do you parse the e-values for your analysis from this file?
The easiest way to parse this file might be to use some existing JSON parser (e.g., http

 HYPERLINK "http://docs.python.org/library/json.html"
://

 HYPERLINK "http://docs.python.org/library/json.html"
docs

 HYPERLINK "http://docs.python.org/library/json.html"
.

 HYPERLINK "http://docs.python.org/library/json.html"
python

 HYPERLINK "http://docs.python.org/library/json.html"
.

 HYPERLINK "http://docs.python.org/library/json.html"
org

 HYPERLINK "http://docs.python.org/library/json.html"
/

 HYPERLINK "http://docs.python.org/library/json.html"
library

 HYPERLINK "http://docs.python.org/library/json.html"
/

 HYPERLINK "http://docs.python.org/library/json.html"
json

 HYPERLINK "http://docs.python.org/library/json.html"
.

 HYPERLINK "http://docs.python.org/library/json.html"
html - you can get json parser for almost every programming language), because this allows you to see structure of the data in the file. You can then access data similar to the following:

print simprot[2].alignment[0].scores.z_score

In every .json file [] is an array and {} is an object. File 'alignments.json' is organized as an array of similar proteins, where the highest scoring (according to z_score in alignment_no:0) are first:

[simprot1, simprot2, simprot3, ...] then each protein is an object: simprot = {"pdb_id":"1all", ... "alignment":[ali0, ali1, ...]} each simprot can have up to five alignments which are array: alignment = [ali0,ali1, ...] etc. the relevant score for you is probably z_score or e_value.
I was able to figure all the things out and now I can read the JSON files and also find similar binding site in most cases. However in some cases my program dies saying incorrect format of JSON file Perl error -----> malformed JSON string, neither array, object, number, string or atom, at character offset 179 (before "inf, "alignment_score..."). The problem is in alignments.json. Is it a perl problem ?

In 'alignments.json' file, try replacing "inf" with some negative value (-99.0). The real problem is probably in your procedure (check!).

Can I use a protein-protein binding site as input?

Yes. See usage of '-bsite' modifier in this guide.

18

