
ProBiS Algorithm

2012

User’s Guide

August 31, 2012

Laboratory for Molecular Modeling
National Institute of Chemistry

Hajdrihova 19
1000 Ljubljana, Slovenia

www . sicmm . org
Support: konc @ cmm . ki . si

Collaborations: dusa @ cmm . ki . si

1

http://www.sicmm.org/
mailto:dusa@cmm.ki.si
mailto:dusa@cmm.ki.si
mailto:dusa@cmm.ki.si
mailto:dusa@cmm.ki.si
mailto:dusa@cmm.ki.si
mailto:dusa@cmm.ki.si
mailto:dusa@cmm.ki.si
mailto:konc@cmm.ki.si
mailto:konc@cmm.ki.si
mailto:konc@cmm.ki.si
mailto:konc@cmm.ki.si
mailto:konc@cmm.ki.si
mailto:konc@cmm.ki.si
mailto:konc@cmm.ki.si
http://www.sicmm.org/
http://www.sicmm.org/
http://www.sicmm.org/
http://www.sicmm.org/

Table Of Contents
Background..4
Installation Instructions..4
Required Libraries..4
Examples...5

Example 1: Superimpose a pair of protein structures (pairwise alignment)..............................5
Example 2: Superimpose a pair of binding sites (pairwise alignment II)...................................6
Example 3: Compare a protein against many protein structures..6
Example 4: Compare a binding site against many protein structures.......................................7
Example 5: Compare a binding site against many other binding sites......................................8

Options and modifiers..9
Options...9

-align ..9
-compare ..9
-extract ...9
-results ...9
-surfdb ...9
-h ..10

Modifiers...10
-alno ALIGNMENT_NO...10
-bsite BSITE, -bsite1 BSITE, or -bsite2 BSITE..10
-c1, c2...10
-database ..10
-dist INTER_CHAIN_DIST ...10
-f1, f2..10
-in INDIR ...10
-local ..10
-longnames...11
-motif MOTIF, -motif1 MOTIF, or -motif2 MOTIF...11
-nobb ...11
-nomarkbb ...11
-noclus ..11
-nofp ..11
-noprune ..11
-out OUTDIR ...11
-param PAR_FILE ...11
-sfile SURF_FILE..11
-super ...12
-verbose ...12
-z_score Z_SCORE ...12

Output files...12
info.json..12
query.json...12

2

alignments.json...13
*.cons.pdb, *.bu#.cons.pdb...14
*.rota.pdb ...15

Using -align option..15
Using -super modifier..15

FAQ... 15
Should I use as input cut-out binding sites (fragments) or complete protein structures?.....15
Why .srf file still contains all protein atoms when I used -bsite or -motif to extract only on a
binding site?..16
How fast is generation of surfaces (.srf files) with -extract?..16
Is it possible to run local alignment between two proteins. How can I use MOTIF in the
parameter file to do this (align two binding sites)?..16
I already have 1phrA.nosql file. However I don't understand how I can get the P-value or
significance of match between two structures?...16
I get two json files info.json & query.json. I dont know much about json format, so I don't
understand query.json. But cat info.json gives me this {"z_score":1, "qpdb":"1phr",
"qcid":"A", "biof": ["1phr.cons.pdb", "1phr.bu1.cons.pdb"]}. Does this means that 1phr has a
Z-score = 1 for only self, so it does not matches with anything in proteins.txt?...................16
I am trying to run probis on a proteome scale. So a lot of the proteins are models, with
UniProt ID but it seems the program reads only first 4 letters of protein name. For example
when I run 'mpiexec -host fp167 -np 16 ./probis -surfdb -sfile srfs.txt -f1 P0A626_bs1.srf -c1
A' it generates a nosql file P0A6A.nosql. So I am not sure whether it will correctly read my
srfs.txt which contain many modeled structures having long names?.................................17
How to specify the input or output directory. ..17
Can you tell me about the format of alignment.json so that I can parse the output. How do
you parse the e-values for your analysis from this file?...18
I was able to figure all the things out and now I can read the JSON files and also find similar
binding site in most cases. However in some cases my program dies saying incorrect
format of JSON file Perl error -----> malformed JSON string, neither array, object, number,
string or atom, at character offset 179 (before "inf, "alignment_score..."). The problem is in
alignments.json. Is it a perl problem ?...18
Can I use a protein-protein binding site as input?...18

3

Background
ProBiS program aligns and superimposes complete protein surfaces, surface motifs, or protein
binding sites. It enables pairwise alignments as well as fast database searches for similar
proteins or binding sites. The program can find similar binding sites even in proteins with
different folds. ProBiS program is parallel, for single or multiple CPU platforms, and implements
the latest ProBiS algorithm (Parallel-ProBiS algorithm).

Further information can be found in the following articles:
 Konc,J., Depolli,M., Trobec,R., Rozman,K., Janezic,D. Parallel-ProBiS: Fast parallel

algorithm for local structural comparison of protein structures and binding sites. J. Comp.
Chem., 2012, doi: 10.1002/jcc.23048.

 Konc,J. and Janezic,D. ProBiS algorithm for detection of structurally similar protein

binding sites by local structural alignment. Bioinformatics 2010, 26, 1160-1168.

Installation Instructions
For installation of the ProBiS source code on Ubuntu (or similar system) do the following:

● Unzip the distribution. A directory is created, in which there is the source code of ProBiS
algorithm. Change to this directory after the unpacking is complete.

$ unzip probis-{version_number}.zip
$ cd probis-{version_number}

● Compile ProBiS source code into executable program.

$ make probis

● When compiled, type 'probis' to start.

$./probis

Required Libraries
ProBiS requires Open MPI library , GNU scientific library and GNU C ++ compiler . Installation of
these libraries for Ubuntu is easy:

$ sudo apt-get install openmpi-bin libopenmpi-dev libgsl0-dev g++

4

http://www.sicmm.org/~konc/articles/23048_fta.pdf
http://www.sicmm.org/~konc/articles/23048_fta.pdf
http://www.sicmm.org/~konc/articles/Bioinformatics-2010-Konc-1160-8.pdf
http://www.sicmm.org/~konc/articles/Bioinformatics-2010-Konc-1160-8.pdf
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/

Examples
Files for each example are in a directory ‘example{number}’. Just ‘cd’ to an example directory,
and you are ready to start! New terms, options, and modifiers, introduced in each example, are
marked in bold.

Example 1: Superimpose a pair of protein structures
(pairwise alignment).

ProBiS will find all local structural alignments of the compared protein surfaces, and
superimpose the second protein’s coordinates onto the first protein’ coordinates according to
the found alignments.

● Superimpose two proteins as follows:

$../probis -compare -super -f1 1phr.pdb -c1 A -f2 3jvi.pdb -c2 A

Output files '*.rota.pdb' contain 3jvi’s coordinates (only!) superimposed onto 1phr
according to the three different alignments found in this case. The best superimposition
(with highest z_score) is in file ‘1phrA_3jviA.0.rota.pdb’! Alignment scores are in
'REMARK PROBIS' lines in the '.rota.pdb' files.

Superimposed proteins.

Example 2: Superimpose a pair of binding sites
(pairwise alignment II).

Superimposing two binding sites is super easy (for correct scoring use .pdb files of complete
proteins with ligands!):

5

● Superimpose the two binding sites defined as residues in a 3.0 Angstrom radius around
the SO4 ligands as follows (see -bsite modifier):

$../probis -compare -super -dist 3.0 -f1 1phr.pdb -c1 A -bsite1 SO4.158.A -f2
3jvi.pdb -bsite2 SO4.201.A -c2 A

Alternatively, you can also directly select the SO4 binding site residues by their residue
numbers and chain identifier(s) using the ‘-motif’ modifier:

$../probis -compare -super -motif1 "[:A and (12-19,129-131)]" -motif2 "[:A and
(7-15)]" -f1 1phr.pdb -c1 A -f2 3jvi.pdb -c2 A

Output file ‘1phrA_3jviA.0.rota.pdb’ contains 3jvi’s coordinates (only!) superimposed onto
1phr according to the found alignment of the two binding sites. Alignment scores are in
'REMARK PROBIS' lines in '.rota.pdb' files.

Example 3: Compare a protein against many protein
structures.

● Convert proteins from ‘.pdb’ to ‘.srf’ (surface) format, which allows faster computation.

$../probis -extract -f1 1phr.pdb -c1 A > 1phrA.srf
$ for i in $(cat proteins.txt); do ../probis -extract -f1 ${i:0:4}.pdb -c1 ${i:4:1} >
$i.srf; done

Expression ${i:0:4} is replaced by first four letters on each line in proteins.txt (I'm using
Bash notation, which might differ from yours).

● Run ProBiS on 8 processors for query protein 1phr.A. Resulting pairwise alignments are
saved in an ‘.nosql’ file. The hostfile ‘hosts’ is a text file with hosts specified, one per line.
To run the non-parallel version, just omit the ‘mpiexec’ command and its parameters.

$ mpiexec -v -hostfile hosts -np 8 ../probis -surfdb -sfile srfs.txt -f1 1phrA.srf
-c1 A

● Read a ‘.nosql’ file and convert alignments to Json format. Output the query protein PDB
with residues marked by degrees of structural conservation (see *.cons.pdb).

$../probis -results -f1 1phr.pdb -c1 A

● To get superimposed proteins as .pdb files.

$ for i in $(cat proteins.txt); do ../probis -align -alno 0 -f1 1phr.pdb -c1 A -f2 $
{i:0:4}.pdb -c2 ${i:4:1}; done

Output are '*.alno.rota.pdb' files with rotated coordinates of the aligned proteins and the
original coordinates of the query protein. To get alignment no. 2 or 3, use ‘-alno 1‘ or ‘-
alno 2’; etc. Alignment numbers start with 0!

6

Example 4: Compare a binding site against many
protein structures.

● Extract the SO4 ligand’s binding site and save it to ‘.srf’ file. This binding site is defined
as all surface residues in a radius of 3.0 Angstroms around the SO4 ligand. Use an
intact PDB file, containing the whole protein and ligands, with ProBiS! (Do not cut out
binding sites into a separate file by hand, because ProBiS will do this for you.)

Binding site for SO4 ion. Residues lining the binding site are cyan sticks.

Ligand is identified by its residue name, residue number, and chain identifier. Use the ‘-
bsite’ and ‘-dist’ modifiers as follows:

$../probis -extract -bsite SO4.158.A -dist 3.0 -f1 1phr.pdb -c1 A > 1phrA.srf

Alternatively, you can also select the SO4 binding site residues by their residue numbers
and chain identifier(s) using the ‘-motif’ modifier:

$../probis -extract -motif "[:A and (12-19,129-131)]" -f1 1phr.pdb -c1 A >
1phrA.srf

Syntax is the same as for selecting residues in Jmol. If the binding site was on the
interface of two chains (e.g., chain A and B), you could do the following: "[:A and
(residue_ numbers_A) or :B and (residue_numbers_B)]", and also provide two chain id’s
such as ‘-c1 AB’ .

Then:

$ for i in $(cat proteins.txt); do ../probis -extract -f1 ${i:0:4}.pdb -c1 ${i:4:1} >
$i.srf; done

● Run ProBiS on 8 processors for query binding site on 1phr.A. Resulting pairwise
alignments are saved in an ‘.nosql’ file. The hostfile ‘hosts’ is a text file with hosts
specified, one per line.

7

$ mpiexec -v -hostfile hosts -np 8 ../probis -surfdb -local -sfile srfs.txt -f1
1phrA.srf -c1 A

Use '-local' modifier if you want to get only alignments in the selected binding site region
(it's also a bit faster). Otherwise, the alignments will be extended to whole proteins.

● Read an ‘.nosql’ file and convert alignments to Json format. Output the query protein
PDB with residues marked by degrees of structural conservation (see *.cons.pdb).

$../probis -results -f1 1phr.pdb -c1 A

● To get PDB files of the superimposed proteins.

$ for i in $(cat proteins.txt); do ../probis -align -alno 0 -f1 1phr.pdb -c1 A -f2 $
{i:0:4}.pdb -c2 ${i:4:1}; done

Output are *.alno.rota.pdb files with rotated coordinates of aligned proteins. To get
alignment no. 2 or 3, use ‘-alno 1‘ or ‘-alno 2’; etc. Alignment numbers start with 0!

Multiple superimposed binding sites (red) and ligands in the center.

Example 5: Compare a binding site against many
other binding sites.

● Everything is the same as in Example 4, except that you have to prepare a file with
ligand codes (format them according to rules described with ‘-bsite’ modifier) that will
define the binding sites you want to compare (see ‘proteins.txt’ in this example’s
directory). This time, the command for converting .pdb to .srf files is:

$ for i in $(cat proteins.txt); do ../probis -extract -bsite ${i:6} -dist 3.0 -f1 $
{i:0:4}.pdb -c1 ${i:4:1} > ${i:0:5}.srf; done

8

Options and modifiers
Run ProBiS with the following command:

probis {OPTION} [MODIFIERS] -f1 PDB_FILE1 -c1 CHAIN_ID1 [-f2 PDB_FILE2 -c2
CHAIN_ID2]

Options

-align
Read a rotational matrix of an alignment from an .nosql file and superimpose the two given
proteins accordingly (first run -compare or -surfdb). Output the superimposed proteins'
coordinates in a .pdb file. You need to provide both .pdb files that you want to superimpose (see
-f1, -c1, -f2, c2 modifiers) and an alignment number (see -alno modifier).

-compare
Compare two protein surfaces (.pdb or .srf files). (If you use .pdb files, surfaces will be
computed first.) Output their local structural alignments in an .nosql file. Each alignment consists
of a rotational matrix, alignment scores, and aligned residues of the compared proteins.

-extract
Calculate surface of a protein. Redirect the output (which is the surface) to a surface (.srf) file.
Surface files can be used instead of .pdb files together with -compare or -surfdb options, which
improves performance when doing repetitive comparisons (because surface does not need to
be recalculated for each comparison). Option -surfdb works with .srf files exclusively!

-results
Read alignments from an .nosql file, filter them according to their scores, and calculate
fingerprint residues (which can also be used as filter). Output results in Json format. In addition,
replace B-factors in the query protein’s PDB file with the degrees of structural conservation. If
used with -ligdir modifier, output ligands in Json format as well.

-surfdb
Compare the query protein surface (.srf) with other protein surfaces listed in the SURF_FILE
(see -sfile modifier). This does the same calculation as the -compare option, but faster, because
protein surfaces are precalculated (see -extract option). This options also supports parallel
computation on multiple CPUs. Output is the same as with -compare.

-h
Show list of all parameters and their current values. You can copy/paste the parameters into a
separate file and change their values (see -param modifier).

9

Modifiers

-alno ALIGNMENT_NO
Each comparison of a pair of proteins may result in many different local structural
alignments.The alignment number can be 0 to 4 (see default CLUS_TO_OUTPUT parameter).

-bsite BSITE, -bsite1 BSITE, or -bsite2 BSITE
This selects protein residues in a certain radius (set by -dist) around the given ligand, and takes
these residues as input (use with -extract or -compare options). If used with -compare, it only
works with .pdb files (not .srf).
For example:
 ‘-bsite ATP.305.A’ - ATP (residue name), 305 (residue number), A (chain id)
‘-bsite *.*.B’ - chain B is the ligand (so you can select protein-protein binding sites as input)

-c1, c2
Chain identifiers of the compared proteins. You may give multiple chains, e.g., '-c1 ABC'.

-database
Used by the web server (with -surfdb and -compare options). It will output an .nosql file as
usual, and additional .nosql file with inversed rotational matrices, whose lines are marked with
asterisks.

-dist INTER_CHAIN_DIST
The distance between protein chains or between ligand and protein. Use with -bsite modifier or
-mark and -results options.

-f1, f2
Compared proteins' files (.pdb or .srf).

-in INDIR
Directory where input files are.

-local
Use this to perform local alignments search (with -compare or -surfdb options). By default, after
the local alignment is found (with maximum clique algorithm), an attempt is made to extend this
alignment along the backbones of the compared proteins. In this way, parts of proteins that
adopt different conformations (e.g., loops) can be aligned (these aligned residues are marked
with 'flx' in alignments.json).

-longnames
Use this to allow long file names. By default the protein names are trimmed down to 4 letters.

-motif MOTIF, -motif1 MOTIF, or -motif2 MOTIF

10

This selects residues to be used as a query instead of the whole protein structure (use with
-extract or -compare options). This will generate a .srf file with only the selected residues. To
select some residues on chains A and B of the input protein, use -motif "[:A and (14,57,69-71)
or :B and (33,34,50)]". Note that chain Iids are case sensitive. Square brackets are mandatory!

-nobb
Do not include descriptors originating from backbone atoms.

-nomarkbb
Turns off the default action, which is to mark (not delete) backbone descriptors. In the first step
of filtering, only non-backbone descriptors are used, while in the maximum clique step, all
descriptors are used.

-noclus
Local structural alignments found (maximum cliques) are not clustered.

-nofp
Do not calculate fingerprint residues. Do not filter by fingerprint residues (use with -results
option).

-noprune
Alignments are not pruned. By default bad scoring cliques are deleted (see
SURF_VECTOR_ANGLE, BLOSUM_SCORE and CALPHA_RMSD parameters).

-out OUTDIR
Directory to write output files to.

-param PAR_FILE
Read parameters from the specified parameter file.

-sfile SURF_FILE
Specify file that contains names of .srf files to be compared with the query protein (see -surfdb
option). Each line must contain one .srf file-name.
Example:
protein1.srf A
protein2.srf B
protein3.srf A
etc.

-super
Find local structural alignments between two proteins (use with -compare option) and
superimpose the two proteins according all alignments found. For each alignment, output the
'.rota.pdb' file with the proteins superimposed according to this alignment.

11

-verbose
Output debugging information. Use when testing the program.

-z_score Z_SCORE
The cutoff value for z_score. Low z_score (<2) means that more insignificant alignments will be
outputted (these can also occur by chance), higher z_score (>2) means only significant
alignments will be outputted (use with -results option).

Output files
For explanation of the Json format see http :// www . json . org / . Json is supported in all major
programming languages.

info.json
Example:
{"z_score":1,"qpdb":"bs3","qcid":"A","biof":["bs3.cons.pdb"]}

Legend:

z_scor
e

the cutoff z_score (see -z_score modifier); only alignments with their z_scores above
this value are kept in ‘alignments.json’ file

qpdb query pdb identifier (the first four letters of the input .pdb file) (see -longnames modifier)
qcid query chain identifier
biof names of the biological-assembly files of the query protein (if they exist)

query.json
Lists residues of the query protein and their degrees of structural conservation.

Example:
[

{"resi":1,"resn":"G","chain_id":"A","cons":0,"fp":0},
…
{"resi":129,"resn":"R","chain_id":"A","cons":4,"fp":0}

]

Legend:

resi residue number
resn residue name (one-letter notation)
chain_id chain identifier
cons degree of structural conservation between 0 and 9
fp is it a fingerprint (highly conserved) residue? 0 - no, 1 - yes

12

http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/

alignments.json
Contains a list of aligned proteins sorted by their scores (sorting is done only by the z_score of
alignment number 0 for each protein).

Example:
[

{
"pdb_id":"1eyv",
"chain_id":"A",
"nfp":0,
"protein_name":"-",
"alignment":
[

{
"scores":
{

"alignment_no":0,
"aligned_vertices":182,
"e_value":5.45e-144,
"rmsd":0.1,
"sva":1.01,
"z_score":4.74,
"alignment_score":12.45

},
"rotation_matrix":
[

[1.00,-0.00,0.00],
[-0.00,1.00,-0.00],
[-0.00,0.00,1.00]

],
"translation_vector":[-0.00,-0.00,0.00],
"aligned_residues":[

{"resn1":"L","resi1":13,"chain_id1":"A","cl":"","resn2":"L","re
s

i2":13,"chain_id2":"A"},
...
{"resn1":"F","resi1":129,"chain_id1":"A","cl":"","resn2":"F","r

e
si2":14,"chain_id2":"A"}

]
},
...

]
},
{ aligned protein #2 (similar as above) },
{ aligned protein #3 (similar as above) },
…
{ aligned protein #N (similar as above) }

]

13

Legend:

pdb_id pdb id of the aligned protein
chain_id chain id of the aligned protein
nfp number of fingerprint (highly conserved) residues in all alignments of the

aligned protein
protein_name name of the protein (not used)
alignment array of all alignments for one aligned protein
scores object that holds all different scores for one alignment
alignment_no alignment number (starts with 0!)
aligned_vertices number of aligned graph vertices (the compared proteins are represented

as vertices on the level of their functional groups)
e_value expectation value for an alignment (the lower the better)
rmsd RMSD of the aligned vertices (not atoms!)
sva surface vector angle is the angle between the two normal vectors of the

superimposed protein surfaces (lower the better)
z_score Z-score for this alignment
alignment_score a compound score calculated from sva, rmsd, e_value, and aligned_vertices
rotation_matrix use rotation matrix (Xrot) and translation vector (Tvec) to superimpose

coordinates of aligned protein with the query protein: Xrot=R*X + Tvec
translation_vector see rotation_matrix
aligned_residues object that holds corresponding aligned residues of the two compared

proteins
resn1, resn2 residue names of the aligned residues: 1 - first protein, 2 - second protein
resi1, resi2 residue numbers of the aligned residues: 1 - first protein, 2 - second protein
chain_id1,
chain_id2

chain ids of the aligned residues: 1 - first protein, 2 - second protein

cl if this is flexible alignment (flx), then this alignment was found by extension
of local alignments along backbones (see -local modifier)

*.cons.pdb, *.bu#.cons.pdb
Coordinates of the query protein (or its biological units) with degrees of structural conservation
in B-factors.

 Degrees of struct. conservation [0-9]
 |
 V

ATOM 164 N ASP A 25 5.417 22.585 4.112 1.00 0.40
ATOM 165 CA ASP A 25 4.752 21.401 3.553 1.00 0.40

*.rota.pdb

Using -align option
Superimposed coordinates of the query and compared proteins. Aligned residues are marked
with ones in B-factors.

 Aligned residues have 1.00 here
 |
 V

14

MODEL 1 1d1qB ← Superimposed protein
…
ATOM 1417 N CYS B 18 8.287 29.028 27.733 1.00 1.00
ATOM 1418 CA CYS B 18 8.912 28.194 28.757 1.00 1.00
…
ENDMDL
MODEL 2 1phrA ← Query protein (original coordinates)
…
ATOM 97 N CYS A 17 8.075 28.921 27.850 1.00 1.00
ATOM 98 CA CYS A 17 8.756 28.117 28.832 1.00 1.00
…
ENDMDL
END

Using -super modifier
REMARK PROBIS ALIGNED_VERTICES 91 ← Alignment scores
REMARK PROBIS E_VALUE 6.62986e41
REMARK PROBIS RMSD 0.715179
REMARK PROBIS SVA 0.947438 Superimposed protein
REMARK PROBIS Z_SCORE 3.34832 |
REMARK PROBIS ALIGNMENT_SCORE 9.37345 V
ATOM 1 N SER A 0 3.462 48.359 42.685 1.00 24.99
ATOM 2 CA SER A 0 2.739 47.051 42.825 1.00 24.45

FAQ
Should I use as input cut-out binding sites (fragments) or complete

protein structures?
ProBiS does better if you take whole protein structures, and then define residues to be
compared (binding sites, motifs) with the '-motif or '-bsite' modifiers (see examples 2, 4, and 5).
If you still want to use fragments of '.pdb' files as input, you should add to the parameters.inp
the following lines:

Z_SCORE -1.0 # allow insignificant alignments
SURF_VECTOR_ANGLE 4.0 # turns off checking for equal surface vector angles

Then use '-param' modifier at the command line, when you run probis -surfdb or -compare, e.g.:

$../probis -surfdb -param parameters.inp -f1 …..

Why .srf file still contains all protein atoms when I used -bsite or
-motif to extract only on a binding site?

If using whole structures together with -motif, the .srf file will still hold the whole protein, but only
the binding site residues will be used for comparison (they will be marked as surface). Use the
-motif or -bsite modifiers on target structure or on both target and template structures.

15

How fast is generation of surfaces (.srf files) with -extract?
Generation of .srf files should be lightning-fast (also if -motif and -bsite modifiers are used). I
regularly use it for database of few 10k proteins, which is completed in minutes.

Is it possible to run local alignment between two proteins. How can I
use MOTIF in the parameter file to do this (align two binding
sites)?

You can run local alignment between two protein binding sites, you should use the -motif (or
-bsite) modifier together with --extract option (see also examples 2, 4, and 5), to create '.srf'
files, that contain only selected surface residues :

For query protein, e.g.:

$../probis -extract -motif "[:A and (14,57,69-71) or :B and (33,34,50)]" -f1 1phr.pdb -c1 A
> 1phrA.srf

Similar for the compared protein(s):

$ for i in `cat proteins.txt`; do ../probis -extract -motif "some valid selection of residues"
-f1 ${i:0:4}.pdb -c1 ${i:4:1} > $i.srf;done

Don't forget to use "" around the residue selection!

I already have 1phrA.nosql file. However I don't understand how I can
get the P-value or significance of match between two
structures?

You can get E-value or Z-score (the last shows you the significance of match) by reading the
'.nosql' file with:

$../probis -results -param parameters.inp -f1 1phr.pdb -c1 A

This will generate a '.json' file, in which e_value and z_score will be for each alignment
generated (there can be more alignments, identified by alignment_no, per each pair of
compared proteins).

I get two json files info.json & query.json. I dont know much about
json format, so I don't understand query.json. But cat info.json
gives me this {"z_score":1, "qpdb":"1phr", "qcid":"A", "biof":
["1phr.cons.pdb", "1phr.bu1.cons.pdb"]}. Does this means that
1phr has a Z-score = 1 for only self, so it does not matches with
anything in proteins.txt?

In 'info.json', the line {"z_score":1, "qpdb":"1phr", "qcid":"A", "biof": ["1phr.cons.pdb",
"1phr.bu1.cons.pdb"]} means that the cutoff z_score is set to 1. All alignments with z_score <
1.0 will be deleted. You can change this (and other parameters) in parameters.inp file: to tighten
the filter, just add line Z_SCORE 2.0.

16

File 'query.json' just gives degress of conservation for every residue of the query protein, e.g.,
{"resi":1,"resn":"A","chain_id":"A","cons":0,"fp":0}, means that residue number 1, chain A, has a
conservation of 0 (could be [0-9]).

I am trying to run probis on a proteome scale. So a lot of the proteins
are models, with UniProt ID but it seems the program reads only
first 4 letters of protein name. For example when I run 'mpiexec
-host fp167 -np 16 ./probis -surfdb -sfile srfs.txt -f1
P0A626_bs1.srf -c1 A' it generates a nosql file P0A6A.nosql. So I
am not sure whether it will correctly read my srfs.txt which
contain many modeled structures having long names?

In "molecule.cc" the program trims protein names to 4 characters. This is an old legacy behavior
required by the web server... If you want to use long names, just use '-longnames' modifier.

How to specify the input or output directory.
You can try to use '-indir' and '-outdir' modifiers. If these don't work (they are still experimental),
you can try this:

Output:
put the directory where "probis" program is (e.g. /usr/local/bin) in the path (in your .bashrc file
PATH=$PATH:/usr/local/bin), make a directory where you want your output files to be written,
'cd' to that directory, and run probis from there. All output files will appear in that directory.

Input: if your .srf files are in e.g. '/tmp' directory, use full
path in srfs.txt
for example:

/tmp/P71662_bs1.srf A
/tmp/P71662_bs2.srf A
/tmp/O69689_bs1.srf A
/tmp/O69689_bs3.srf A
/tmp/O69689_bs4.srf A

Also, use full path on the command line for example:

$ probis -extract -f1 /pdbbank/P0A626_bs1.pdb -c1 A > /tmp/P0A626_bs1.srf
$ mpiexec -v -hostfile /full-path/hosts -np 8 probis -surfdb -param /full-
path/parameters.inp --sfile /full-path/srfs.txt -f1 P0A626_bs1.srf -c1 A

This will generate P0A626_bs1A.nosql.

$ probis -results --param /full-path/parameters.inp -f1 /pdbbank/P0A626_bs1.pdb -c1 A

Can you tell me about the format of alignment.json so that I can parse
the output. How do you parse the e-values for your analysis
from this file?

17

The easiest way to parse this file might be to use some existing JSON parser (e.g.,
http :// docs . python . org / library / json . html - you can get json parser for almost every programming
language), because this allows you to see structure of the data in the file. You can then access
data similar to the following:

print simprot[2].alignment[0].scores.z_score

In every .json file [] is an array and {} is an object. File 'alignments.json' is organized as an array
of similar proteins, where the highest scoring (according to z_score in alignment_no:0) are first:
[simprot1, simprot2, simprot3, ...] then each protein is an object: simprot = {"pdb_id":"1all", ...
"alignment":[ali0, ali1, ...]} each simprot can have up to five alignments which are array:
alignment = [ali0,ali1, ...] etc. the relevant score for you is probably z_score or e_value.

I was able to figure all the things out and now I can read the JSON
files and also find similar binding site in most cases. However in
some cases my program dies saying incorrect format of JSON
file Perl error -----> malformed JSON string, neither array, object,
number, string or atom, at character offset 179 (before "inf,
"alignment_score..."). The problem is in alignments.json. Is it a
perl problem ?

In 'alignments.json' file, try replacing "inf" with some negative value (-99.0). The real problem is
probably in your procedure (check!).

Can I use a protein-protein binding site as input?
Yes. See usage of '-bsite' modifier in this guide.

18

http://docs.python.org/library/json.html
http://docs.python.org/library/json.html
http://docs.python.org/library/json.html
http://docs.python.org/library/json.html
http://docs.python.org/library/json.html
http://docs.python.org/library/json.html
http://docs.python.org/library/json.html
http://docs.python.org/library/json.html
http://docs.python.org/library/json.html
http://docs.python.org/library/json.html
http://docs.python.org/library/json.html
http://docs.python.org/library/json.html
http://docs.python.org/library/json.html

	Background
	Installation Instructions
	Required Libraries
	Examples
	Example 1: Superimpose a pair of protein structures (pairwise alignment).
	Example 2: Superimpose a pair of binding sites (pairwise alignment II).
	Example 3: Compare a protein against many protein structures.
	Example 4: Compare a binding site against many protein structures.
	Example 5: Compare a binding site against many other binding sites.

	Options and modifiers
	Options
	-align
	-compare
	-extract
	-results
	-surfdb
	-h

	Modifiers
	-alno ALIGNMENT_NO
	-bsite BSITE, -bsite1 BSITE, or -bsite2 BSITE
	-c1, c2
	-database
	-dist INTER_CHAIN_DIST
	-f1, f2
	-in INDIR
	-local
	-longnames
	-motif MOTIF, -motif1 MOTIF, or -motif2 MOTIF
	-nobb
	-nomarkbb
	-noclus
	-nofp
	-noprune
	-out OUTDIR
	-param PAR_FILE
	-sfile SURF_FILE
	-super
	-verbose
	-z_score Z_SCORE

	Output files
	info.json
	query.json
	alignments.json
	*.cons.pdb, *.bu#.cons.pdb
	*.rota.pdb
	Using -align option
	Using -super modifier

	FAQ
	Should I use as input cut-out binding sites (fragments) or complete protein structures?
	Why .srf file still contains all protein atoms when I used -bsite or -motif to extract only on a binding site?
	How fast is generation of surfaces (.srf files) with -extract?
	Is it possible to run local alignment between two proteins. How can I use MOTIF in the parameter file to do this (align two binding sites)?
	I already have 1phrA.nosql file. However I don't understand how I can get the P-value or significance of match between two structures?
	I get two json files info.json & query.json. I dont know much about json format, so I don't understand query.json. But cat info.json gives me this {"z_score":1, "qpdb":"1phr", "qcid":"A", "biof": ["1phr.cons.pdb", "1phr.bu1.cons.pdb"]}. Does this means that 1phr has a Z-score = 1 for only self, so it does not matches with anything in proteins.txt?
	I am trying to run probis on a proteome scale. So a lot of the proteins are models, with UniProt ID but it seems the program reads only first 4 letters of protein name. For example when I run 'mpiexec -host fp167 -np 16 ./probis -surfdb -sfile srfs.txt -f1 P0A626_bs1.srf -c1 A' it generates a nosql file P0A6A.nosql. So I am not sure whether it will correctly read my srfs.txt which contain many modeled structures having long names?
	How to specify the input or output directory.
	Can you tell me about the format of alignment.json so that I can parse the output. How do you parse the e-values for your analysis from this file?
	I was able to figure all the things out and now I can read the JSON files and also find similar binding site in most cases. However in some cases my program dies saying incorrect format of JSON file Perl error -----> malformed JSON string, neither array, object, number, string or atom, at character offset 179 (before "inf, "alignment_score..."). The problem is in alignments.json. Is it a perl problem ?
	Can I use a protein-protein binding site as input?

